1/2

Volume Current Density

Say at a given point \overline{r} located in a volume V, charge is moving in **direction** \hat{a}_{max} .

I îa_{max}

V

Now, consider a **small surface** Δs that is centered at the point denoted by \overline{r} , and oriented such that it is orthogonal to unit vector \hat{a}_{max} . Since charge is moving across this small surface at some rate (coulombs/sec), we can define a **current** $\Delta I = \Delta Q / \Delta t$ that represents the current flowing through Δs .

Note vector $\Delta I \hat{a}_{max}$ therefore represents both the magnitude (ΔI) and direction \hat{a}_{max} of the current flowing through surface area Δs at point \overline{r} .

From this, we can define a **volume current density** $\mathbf{J}(\overline{\mathbf{r}})$ at each and every point $\overline{\mathbf{r}}$ in volume V by **normalizing** $\Delta \mathbf{I} \, \hat{a}_{max}$ by dividing by the surface area $\Delta \mathbf{s}$:

$$\mathbf{J}(\overline{\mathbf{r}}) = \lim_{\Delta S \to 0} \frac{\Delta \mathcal{I} \ \hat{a}_{max}}{\Delta S} \qquad \left[\frac{\mathrm{Amps}}{\mathrm{m}^2}\right]$$

The result is a vector field !

For example, current density $\mathbf{J}(\overline{\mathbf{r}})$ might look like:

NOTE: The **unit** of **volume** current density is **current/area**; for example, A/m^2 .

N V